
has been  necessary  because of the key relation that exists  between H,(s) 
and Hz($)  as stated by  Lemma 1 [ 11 when HI = FP and Hz= P and by 
Lemma 2 in the  present  case.  In  the  general  case,  all we can say at the 
present time  is that if H ,  has no unstable  hidden  modes and the relation 
given  by  Lemma 2 is satisfied by H ,  and € I 2 ,  the existence of N, V, and 
W satisfying  the  above equations is sufficient for RPIS to be solvable. 

The particular formulation used  in Section I1 may be useful in 
parameterizing  all stabilizing controllers  through  the rational function K 
used in [I] to  solve M I S .  This could  possibly  lead to a  better  under- 
standing of minimal-order  stabilizing  controllers. 
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On Alternative Methodologies for the Design of Robust 
Linear  Multivariable  Regulators 

H. G. KWATNY AND K. C.  KALNITSKY 

Abrtmt--’Ihis paper presents two syntI~esis algorithms which embody 
the two major variants of the n u n e m  methodologies which have been 
proposed for  the design of multivariable linear regulators which exhibit the 
property of disturbance rejection with or withont additional rob- 
qualities. It is shown that these two procedures generally lead to substan- 
tively  different  compensator stmctnres. 

I. INTRODUC~ON 

During the past decade a  number  of  techniques  have  been  proposed 
for the design of multivariable linear regulators  enjoying  the  properties 
of disturbance rejection and, in  some cases, structural stability  [I]-[ 121, 
[14], 1151, [IS],  [26]-[30].  Many  of  these procedures  have  been  fairly 
widely applied [3],  [13],  [16], [ lq ,  [19],  [20],  [30], and in view  of the 
interest which has been evidenced by theoretician and practitioner alike, 
it is clear that with the  development of these  concepts the day of 
application of “modern” multivariable control theory is at hand. It 
appears that although many  investigators  have independently evolved 
their  own  specific  design  methodologies,  these can be grouped into two 
distinct variations-those  employing  estimates of (possibly  artificial) 
disturbance states, and those employing  dynamic error augmentation. 
Examples of the  former  have  been  proposed by Kwatny et al. [15],  [18], 
Balchen et nl. [30], Parker [29],  Sebakhy and Wonham [26], and Francis 
[271. Examples of the latter have been proposed by Davison et al. 
[6]-[I I], Young and Williams [ 121, and Calovic and Cuk [ 141. 

In the present authors’ work both types of design  procedures  have 
been  applied-specifically  those  methods of Kwatny et al. and Davison 
et ai. Experience  has  shown that closed-loop transient behavior can be 
significantly different even  when the designs are carried out with the 
intent of attaining the same performance requirements. The question 
naturally arises as to whether  these  differences  come about because of 
the inherent latitude the designer has at various points within  the  design 
processes  or  whether  they  are,  in  fact, due to fundamental differences in 
structure. This paper reports on studies intended to provide at least a 
partial answer to this question. 
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In Section 11, the regulator  problem and the robust regulator problem 
are defined as they will be discussed in  this paper. The adopted formula- 
tion is somewhat less general than can be  treated and that can be found 
discussed in several of the papers cited  above.  Nevertheless, this choice 
has  been  made  in order to avoid  obscuring  the  main  ideas  with  a host of 
nonessential  technical detail. Section 111 presents two basic  design  algc- 
rithms which  typify the essential variants to  be found in the  references. 
Section IV identifies  the fundamental difference  between  these 
methodologies and correlates this result with the  classical  compensator 
design  techniques.  Section V presents  a brief concluding statement. 

11. THE REGULATION hOBLEhf AND CoMPENSATOR STRUCTURE 

This paper is  concerned with a hear time-invariant  system  defined  by 
the equations 

 AX+ EO+ BU 
;= Z w  
y = C x + F w  
p= Gw 

e =y -? 

where x is an n-dimensional plant state vector, y i s  an r-dimensional 
output vector, y i s  an r-dimensional  reference output, u is an m-dimen- 
sional input vector, w is a  q-dimensional  vector  representing  a combined 
state for the  exogenous disturbance and output reference, and e is an 
r-dimensional error vector.  In  what  follows it is assumed that ( A , B )  is 
controllable and (C,A) is observable and that B and C are of fu l l  rank. 
With  some  restriction in generality it is  assumed that the  composite pair 

{ [ C i (F-G) 1, [ - - A _ - -  $!  ;]] is  observable.  Where this condition is 

required it can usually  be  relaxed to detectability. The  discussion in 
Francis [27] on this assumption is pertinent. The regulator problem is the 
construction of a feedback  controller  such that the  closed-loop 
system-excluding  the disturbance states w, is stable (internal stability) 
and e( t )+=O as t - m  for all initial states (output regulation). 

A robust (or structually stable) solution of the regulator problem has 
the  desirable property that closed-loop stability and output regulation 
are preserved under specified  classes of perturbations of plant and 
controller  parameters. 

Numerous  researchers  have  studied the regulator problem from vari- 
ous viewpoints in recent  years [1]-[12],  [14], (151, [ 181,  [26]-[30]. The 
notion of robust solutions of the  regulator  problem appears to have 
originated with Davison [Y] and has been further examined by Davison 
and Goldenberg [ll], Pearson et al. [12], Francis and Wonham [25], 
Sebakhy and Wonham [26], and Francis [271. 

Necessary and sufficient conditions for the  existence of a  solution to 
the  regulator  problem and the robust  regulator  problem  have  been stated 
by  several authors, notably  Davison 191, Davison and Goldenberg [ 111, 
Francis and Wonham 1251, and Francis [2q. These conditions are 
summarized  for the problem as stated above in the following  theorem. 

Theorem I: A necessary and sufficient condition for the  existance of 
a  solution to the  regulator  problem  is that the following conditions hold: 

1) ( A , B )  is stabilizable; 
2) (C,A)  is detectable; 
3) There exists an n X q matrix X and  an m X q matrix LI satisfying the 

relations 

A X - X Z + B U = E  
CX= F- G. 

A neceSSary and sufficient condition for the solution  to the robust 
regulator  problem is obtained if 3) is replaced by 

4) rank[:-‘ : ] = n + r ,  foreach&inthespectnunofZ. 

Proof  of Theorem 1 for the regulator problem  is  given by Francis [271. 
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The  matrices  required in the third condition were  utilized  constructively 
in  solution of the regulator  problem by Kwatny et ai. [15],  [18]. For the 
robust  case a proof is given  by Francis, Sebakhy, and Wonham [37], and 
in Francis [27l,  where arbitrary perturbations are dowed in the plant 
parameters A ,  E ,  B.  Davison and Goldenberg [ 1 I]  provide a proof  where 
arbitrary perturbations are allowed  in the plant parameters A ,  B, C. 
Weaker conditions may  be  required if a s d e c  set of parameter varia- 
tions are allowed  [35].  If the output y is not the error vector e,  then an 
additional condition is that e is readable  from y .  The fourth requirement 
of Theorem 1 implies that m 2. r and that nune of the invariant zeros of 
the  system  correspond  to disturbance eigenvalues. 

The statement of necessary and sufficient conditions for the robust 
regulator is facilitated by introducing the notion of an internal model 
(Francis and Wonham [25]). A matrix A incorporates an internal model 
of degree 1 of a matrix A ,  if the minimal polynomial of A ,  divides 
precisely 1 invariant factors of A .  An internal model of degree I is an 
/-fold  reduplication  in A of the maximum  cyclic component of A,. In the 
context of the regulator problem the following  terminology is occasion- 
ally  employed. A incorporates a “weak” internal model of A ,  if 1 < I < r  
and a “strong” internal model of A ,  if I > r. If A incorporates an internal 
model of A ,  and is the  system matrix of a system S ,  then it is  meaningful 
to speak of observabhty and controllability of the internal model in the 
sense that all  modes corresponding to  the internal model are, respec- 
tively,  observable or controllable. The internal model is an essential 
aspect of the regulator problem as is obvious from the following theo- 
rem. The term  synthesis is  used to denote a plantampensator combm- 
tion. 

Theorem 2: (Necessity of the internal model  [25], [36n. A synthesis 
exhibits  internal stability and output regulation  only if the compensator- 
plant combination incorporates a weak internal model of 2 which is 
controllable by e and observable byy. A synthesis is robust with  respect 
to arbitrary perturbations of E only if the compensator incorporates a 
strong internal model  which  is controllable by e and observable  by u. 

Again it is noted that for a more  general output set y than is  being 
considered  here, it is  also  necessary that e be readable fromy. If this is 
the  case,  Theorem 2 remains  valid  provided that the additional informa- 
tion  carried byy pertains to the plant and is unavailable  from e [25]. 

Theorem 3: (Sufficiency of the internal model [25D. Suppose a synthe- 
sis  exhibits internal stability and the  compensator incorporates a weak 
internal model of Z which  is controllable by e and observable by u. 
Then the  synthesis  exhibits output regulation. If the compensator  incor- 
porates a strong internal model  of Z which is controllable by e and 
observable by u, then the synthesis is robust with  respect to plant 
parameters A ,  E, 3 and all compensator parameters except that part of 
the  compensator  dynamics  which contains the internal model of Z .  

For a discussion of what happens when  there are perturbations of that 
part of the compensator  dynamics which contains the internal model,  see 
Francis and Wonham  [25] and Davison and Goldenberg [ 111. 

111. SYNTHESIS F’ROCEDURE~ 

Of the  numerous  synthesis  procedures  proposed  in  the literature 
[I]-[12],  [14],  [15], [I8], [26]-[30], all appear to fall into two distinct 
categories.  Loosely speaking, one class is based on the feedback of 
estimates of the disturbance states, and the other on the feedback of the 
states of a dynamic system  driven  by the error vector. Included in the 
former category are the  methodologies of Kwatny et uf. [15L [ls], 
Balchen et a/. [30], Parker [29], Sebakhy and Wonham [26], and Francis 
[27]. The latter category  includes the procedures of Davison et d. 
[6]-[l I]. Young and Williams  [12], and Calovic and Cuk [14]. As will be 
seen  below, the compensators are, in general,  substantively  different. 
However, under appropriate circumstances,  depending  upon plant 
parameters and/or designer  choices,  both  classes of synthesis procedures 
will result in identical  compensators. In fact, if the  methodology’  pro- 
posed  by Johnson in his pioneering  works [I ]-[SI is specialized to the 

case of linear timeinvariant systems,  then the class of plants which can 
be dealt with is restricted in such a way that both classes of synthesis 
procedures will produce identical  compensators. 

The two synthesis  procedures  described  below  typify  the two classes of 
procedures  referred  to. 

Synthesis  Procedure A 

Consider  the  composite  system 

i * = A * x * + B * u  
e = C*x*  

where 

The  algorithm  proceeds as follows: 
Step I :  Find a state feedback control law 

u= - M x * =  - M , x - M , u  (3) 

such that 
a) A - BMl is stable (internal stability), and 
b) e(t)+O as t - + m  for all initial states x*(O) (output regulation). This 

is equivalent  to the requirement that 

C*e(R’-B*MP=O, 

Step 2: Design a minimal order observer for the  composite  system 
which will take  the  form 

k=Ac+Ze+Qu 

X*= w,[+ W2e 

where  the parameter matrices A, Z, Q, W , ,  W, are obtained in the  usual 
way. Note  the dim@= n + q - r .  

Step 3: Implement the control 

u = - M ~ * = - M , ~ - M , ; .  (5) 

Explicit  procedures for carrying out Step 1 have been  given  by  Kwatny 
et ai. [15], [18], and Sebahky and Wonham [26]. This problem has been 
extensively  studied in general by Bhattacharyya, Pearson and Wonham 
[21], Bhattacharyya and Pearson (221, and Wonham and Pearson [24]. 
Step 2, of course, is routine [32]. 

Synthesis  Procedure B 

Consider  the  system  defined  by  (1). 
Step I: Define  the  q-dimensional, error driven  dynamical  system 

< = Z q + J e  (6) 

where J is chosen so that ( J , Z )  is controllable 
Step 2: Consider  the  composite  system 

Find a state feedback control law 

u = - K , x - K ~ ~  (8) 

such that the closed-loop  system is stable. 

take  the form 
Step 3: Design a minimal order observer  for the system  (1)  which will 

‘Johnson describes three alternative pints of view  regarding disturbance accommcda- 
tions. It is the  “counteraction”  mode  which  is  referred  to  here as i t  is the only one in the 
spirit  of  the other  procedures  considered  herein. 

Note that dim(a)= n - r. 
Step 4: Implement  the control 
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U =  - K,x-K,q. (10) 

It  should be noted that satisfaction of the conditions of Theorem 1 
along with the  assumptions  following (1) allow both procedures to be 
carried out. Moreover, in both cases the synthesis  exhibits internal 
stability by construction and each procedure incorporates an internal 
model of Z in the  compensator. In procedure B the internal model is 
incorporated through the construction of Step 1;Also by construction, 
the internal model is controllable by e.  The fact that the  composite 
system (7) is  stabilized in Step 2 and Z is unstable guarantees that the 
internal model is observable by u. With procedure A ,  the incorporation 
of an internal model  is not obvious, although it is to be anticipated by 
virtue of the construction. A proof of incorporation of an internal model 
which  is controllable by e and observable by u is given  by  Sebakhy and 
Wonham [2q, and Francis [27l. 

Whether  or not the compensator is a robust solution to the regulator 
problem depends on the structure of Z. Generally, Z is constructed so 
that it contains a weak or strong, as desired, internal model of a primary 
matrix disturbance Z,. If only  a weak internal model is required then it 
is sufficient to take Z= Z,. If a strong internal model is required  then  a 
procedure of outward extension  may  be  used to define Z as described by 
Sebakhy and Wonham [26], and Francis [27]. Note that Z,, may already 
contain a strong internal model of itself. The compensator can therefore 
be  endowed  with the required  type of internal model of the  primary 
disturbance dynamics by appropriate definition of 2. 
Certain elementary properties of the resultant compensators should be 

noted. Both procedures  result in compensators  with  dimension n + q - r. 
Thus, the resultant closed-loop  synthesis will have  dimension 2n + q - r. 
The  closed-loop  poles are located as follows: 

Synthesis Procedure A: n eigenvalues of A - BM, 

n + q- r eigenvalues of A. 

Synthesis Procedure E: n + q eigenvalues of 

[ A -  JC BK' - BK2 0 I 
n - r eigenvalues  of it. 

Since  the  eigenvalue  locations of each  synthesis  come  from two distinct 
subproblems and these subproblems carry different dimensions in the 
two procedures,  there wiU be  circumstances under which no selection of 
design parameters can result in a specified  common set of closed-loop 
eigenvalues. These exceptional situations arise  only  because,  when n,r 
are both odd, synthesis procedure A cannot meet  a  pole  specification 
which does not include at least two  real  poles, but synthesis procedure B 
can. Similarly,  when n is even and r is odd synthesis procedure B cannot 
meet  a  pole  specification  which  does not include at least two real poles, 
but  synthesis procedure A can. This appears to be  a rather trivial 
distinction  since  closed-loop  pole  assignment is generally not such  a 
precise  design  objective that an acceptable specification cannot be found 
which is compatible to both procedures. 

The compensator structures resulting  from  the two synthesis  proce- 
dures are summarized in  Fig. 1. 

A final point worth  mentioning  is that there are variants of both 
synthesis A [23] and synthesis B [ 111 which are not based on the  use of 
observers  for  the construction of estimates of plant or disturbance states. 

DIFFERENCES IN COMPENSATOR CHARACTERISTICS 

The block  diagrams of Fig. 1 exhibit the structural forms of multivari- 
able  servomechanisms  designed via the disturbance estimation  (synthesis 
procedure A )  and error augmentation (synthesis  procedure E )  a p  
proaches.  These  illustrations are suggestive of the two principal  com- 
pensator configurations of classical single-input-single-output (SISO) 
control theory,  The  type A design  results  in  a  series  compensation 
structure.  while  the  type B design  results in a  feedback  compensation 
structure of the  most  common  minor  within  major loop configuration 
[33],  [34]. Indeed, these  analogies  go  beyond  mere  suggestion. This 
notion will be developed  through  the determination of the  closed-loop 

system  zeros. In particular, it is most  convenient to examine the error 
response to reference  signal  excitation. 

The analysis is facilitated  by the following  lemma. 
Lemma I :  Consider the identity feedback  system 

x = A x + B e ,  
y = c x ,  
e = y - g .  

The error response invariant zeros are the eigenvalues of A .  Moreover, if 
(&A) is controllable and ( A , C )  is observable,  then the error response 
transmission  zeros are the  eigenvalues of A .  

Proof: The system  matrix  with input p and output e is 

It follows  from 131, Theorem I ]  that the invariant zeros are the eigenval- 
ues of the matrix 

( A + B C ) - B C = A .  

If the  controllability and observability conditions hold, as postulated, 
then  these carry over to the  feedback  system  with input y and output e. 
Thus, all of the invariant zeros are transmission  zeros. 

Lemma 1 can now  be  used  in the proof of the following. 
Theorem 4: The error response invariant zeros for the synthesis of 

type A consist  of: the n plant poles  and the n+ q- r compensator  poles 
(the eigenvalues of A-QMW, and 4 of which correspond to the  eigen- 
values of Z). The error response transmission zeros  consist  of: the n 
plant poles and those of the n + q - r compensator  poles  which are 
controllable by e and observable  by u. The q compensator poles corre- 
sponding  to Z are always translinission zeros. 

The error response invariant zeros for the  synthesis of type E consist 
of: n modified plant poles  corresponding to the  eigenvalues of ( A  - 
BK,), the n - r observer  eigenvalues  corresponding  to the eigenvalues of 
it and the q eigenvalues of Z. The  transmission  zeros  consist of: the 
eigenvalues of ( A  - EK,)  and the eigenvalues of Z .  

Proof: That the invariant zeros are as stated requires application of 
Lemma  1  in both cases. Determination of the transmission zeros requires 
only  exclusion of those invariant zeros  which  correspond to uncontrolla- 
ble or unobservable modes of the  closed-loop  system. In both cases, the 
fact that the eigenvalues of 2 are included in the set of transmission 
zeros  follows  from the observability and controllability of the internal 
model. The plant is assumed controllable and observable so the pIant 
poles are retained as transmission  zeros in case A .  In the case of 
synthesis B it is well known that the plant with  the  state-feedback  with 
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observer configuration retains the  controllability and observability of the 
plant state, but  the  observer states are uncontrollable [32]. 

The conclusions of Theorem 4 imply that even if the closed-loop pole 
assignments are identical,  the error responses to command  signals will in 
general be different for a synthesis of type A and a synthesis of type B 
by virtue of the fact that the closed-Loop zero patterns will be  different. 
Moreover,  the  zero patterns of the two designs are clearly analogous to 
classical  series and feedback  compensated  servomechanisms,  respec- 
tively. That is, in series compensatcd single-input-single-utpu~ systems, 
the error response  zeros are the inner loop  poles and the cascade 
compensator  poles [34]. It is possible  under  special conditions to use the 
design  flexibility  inherent in both synthesis  procedures at various  stages 
to  obtain  identical  zero patterns. In  general,  however, this is not possible. 

V. CONCLUSIONS 

It has  been noted that of the numerous  multivariable linear regulator 
design  methodologies  which  have  evolved during the past decade, there 
appear to be  two  distinct  categories. In order to examine  the nature of 
any substantive differences inherent in the compensators which are the 
product of these  design  procedures,  two  synthesis  algorithms  have  been 
described  which, it is claimed,  embody  the  essence of the alternative 
methods. As a means for effective  study of the  distinguishing character- 
istics of the  several  design  algorithms  which  have  been  cited,  it has been 
found convenient to discuss  these  procedures in a scenario  which  is 
perhaps less general than the  conditions  under which any one of them 
may  be applicable. Thus, many of the  algorithms are usable  in  more 
general situations and specifically  allow a broader class of measurement 
sets and plant models. 

The study has shown that although it is  usually  possible to meet a 
specific  closed-loop  pole  assignment  objective  with  either of the two 
basic  algorithms,  the resultant closed-loop  zero patterns will typically be 
different and thus the  response to reference  signals will be different 
Moreover, it has been  shown that the zero patterns that arise in the 
system error response are identical to those  which arise in the  two 
classical SISO compensator  configurations,  i.e.,  series and feedback 
compensation. A discussion of the relative  merits of type A versus type B 
has  been  avoided at this stage. Indeed, in the SISO case  there is 
considerable  lore in this regard [33], ( 3 4 1 .  Besides  the fact that the zero 
patterns will be different,  there are important implications  with  regard to 
hardware  implementation and sensitivity.  Much of the  classical  discus- 
sion  is  imprecise and it  may be that a deeper appreciation of these 
alternative configurations can be achieved in the modem  multivariable 
context. 
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Desensitizing Constant Gain Feedback Linear  Regulators 
P. J. FLEMING 

Abstract-A two-stage pmcm is proposed for the desii of lowsensitiv- 
ity constant gain feedback linear regulators. In the f i i  stage nominal 
parameter values are assumed and a model response is obtained. Plant 
parameter variations are taken into account in the second stage, and a 
semitivity reduction algorithm is descn’bed in which a performance index 
wbicb includes a model-following term is to be minimized 7be computer 
solution of the feedback matrix is obtained using a gradient search 
metbod, and a fourthrder aircraft flight control example illusbates the 
design’s capabiities. 

I. INTRODUCXION 

A two-stage  design  process is proposed.  In  the  first  stage a model 
response is obtained which describes  the  desired  dynamical  behavior of 
the  regulator. Determination of this  response  may be carried out by 
design  methods  such as optimal linear-quadratic control, pole  assign- 
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